论文标题
Autopinn:当Automl符合物理信息的神经网络时
AutoPINN: When AutoML Meets Physics-Informed Neural Networks
论文作者
论文摘要
最近提出了物理知识的神经网络(PINN)来解决科学和工程问题,其中将物理定律引入神经网络作为先验知识。借助嵌入式物理定律,PINN可以通过可观察的变量来估计关键参数,这些临界参数无法通过物理工具进行观察。例如,电力电子转换器(PEC)是绿色能源过渡的必不可少的基础。使用电流和电压可以在PEC操作期间无法观察到PINNS来估计电容,这在操作过程中可以很容易地观察到。估计的电容有助于PEC的自我诊断。现有的PINN通常是手动设计的,这是耗时的,由于神经网络架构和超参数的大量设计选择,可能会导致次优性能。此外,PINN通常被部署在不同的物理设备上,例如PEC,具有有限和不同资源的PEC。因此,它需要在不同的资源限制下设计不同的Pinn模型,这使其成为手动设计的更具挑战性的任务。为了应对挑战,我们提出了自动化物理信息的神经网络(AUTOPINN),该框架可以通过组合自动驾驶和PINN来实现PINN的自动设计。具体而言,我们首先量身定制一个搜索空间,该搜索空间允许寻找高准确的PINN进行PEC内部参数估计。然后,我们提出了一种资源感知的搜索策略,以探索搜索空间,以在不同的资源约束下找到最佳的Pinn模型。我们在实验上证明,使用较少的资源,Autopinn能够找到比人设计的最先进的Pinn模型更准确的PINN模型。
Physics-Informed Neural Networks (PINNs) have recently been proposed to solve scientific and engineering problems, where physical laws are introduced into neural networks as prior knowledge. With the embedded physical laws, PINNs enable the estimation of critical parameters, which are unobservable via physical tools, through observable variables. For example, Power Electronic Converters (PECs) are essential building blocks for the green energy transition. PINNs have been applied to estimate the capacitance, which is unobservable during PEC operations, using current and voltage, which can be observed easily during operations. The estimated capacitance facilitates self-diagnostics of PECs. Existing PINNs are often manually designed, which is time-consuming and may lead to suboptimal performance due to a large number of design choices for neural network architectures and hyperparameters. In addition, PINNs are often deployed on different physical devices, e.g., PECs, with limited and varying resources. Therefore, it requires designing different PINN models under different resource constraints, making it an even more challenging task for manual design. To contend with the challenges, we propose Automated Physics-Informed Neural Networks (AutoPINN), a framework that enables the automated design of PINNs by combining AutoML and PINNs. Specifically, we first tailor a search space that allows finding high-accuracy PINNs for PEC internal parameter estimation. We then propose a resource-aware search strategy to explore the search space to find the best PINN model under different resource constraints. We experimentally demonstrate that AutoPINN is able to find more accurate PINN models than human-designed, state-of-the-art PINN models using fewer resources.