论文标题

一种用于学习主要子空间的新型随机梯度下降算法

A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces

论文作者

Lan, Charline Le, Greaves, Joshua, Farebrother, Jesse, Rowland, Mark, Pedregosa, Fabian, Agarwal, Rishabh, Bellemare, Marc G.

论文摘要

许多机器学习问题将其数据编码为矩阵,其中可能是大量的行和列。在神经科学,图像压缩或深度强化学习等几种应用中,这种矩阵的主要子空间提供了单个数据的有用,低维的表示。在这里,我们有兴趣确定来自样本条目的给定矩阵的$ d $二维主要子空间,即从小型随机子膜中。尽管存在许多基于样本的方法(例如OJA的规则\ citep {oja1982simplified}),但这些假设假定访问矩阵或特定矩阵结构(例如对称性)的完整列,并且无法将AS-IS与Neural Networks \ CiteP \ citep \ citep \ citep {baldii198989neural}组合。在本文中,我们得出了一种算法,该算法可以从样本条目中学习主体空间,当近似子空间用神经网络表示时,可以应用于样本,因此可以将其缩放到具有无限数量的行数和列的数据集。我们的方法包括定义最小化的损失函数,其最小化是所需的主体空间,并构建了可以控制偏见的损失梯度估计。我们通过一系列关于合成矩阵,MNIST数据集\ citep {lecun2010mnist}的实验以及强化学习域PuddleWorld \ citep {sutton1995赋予了我们的方法的有用性。

Many machine learning problems encode their data as a matrix with a possibly very large number of rows and columns. In several applications like neuroscience, image compression or deep reinforcement learning, the principal subspace of such a matrix provides a useful, low-dimensional representation of individual data. Here, we are interested in determining the $d$-dimensional principal subspace of a given matrix from sample entries, i.e. from small random submatrices. Although a number of sample-based methods exist for this problem (e.g. Oja's rule \citep{oja1982simplified}), these assume access to full columns of the matrix or particular matrix structure such as symmetry and cannot be combined as-is with neural networks \citep{baldi1989neural}. In this paper, we derive an algorithm that learns a principal subspace from sample entries, can be applied when the approximate subspace is represented by a neural network, and hence can be scaled to datasets with an effectively infinite number of rows and columns. Our method consists in defining a loss function whose minimizer is the desired principal subspace, and constructing a gradient estimate of this loss whose bias can be controlled. We complement our theoretical analysis with a series of experiments on synthetic matrices, the MNIST dataset \citep{lecun2010mnist} and the reinforcement learning domain PuddleWorld \citep{sutton1995generalization} demonstrating the usefulness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源