论文标题

关于将贝叶斯保留的交叉验证应用于外部大气分析

On the Application of Bayesian Leave-One-Out Cross-Validation to Exoplanet Atmospheric Analysis

论文作者

Welbanks, Luis, McGill, Peter, Line, Michael, Madhusudhan, Nikku

论文摘要

在过去的十年中,超球星的传播光谱对太阳系以外的行星的物理和化学性质产生了前所未有的理解。物理和化学知识主要是通过基于一些拟合度度量的拟合竞争模型来拟合竞争模型来提取的。但是,当前使用的指标几乎没有阐明给定模型在单个数据点级别以及可以改进的位置如何失败的。随着我们的数据质量和模型复杂性的提高,迫切需要更好地了解哪些观察结果正在推动我们的模型解释。在这里,我们介绍了贝叶斯保留的交叉验证来评估外部大气模型的性能,并计算预期的对数点式预测密度(ELPD $ _ \ text {loo} $)。 ELPD $ _ \ text {loo} $估计数据点分辨率上大气模型的样本外预测准确性,提供了可解释的模型批评。我们在热木星的合成HST传输光谱上介绍并演示了这种方法。我们将ELPD $ _ \ text {loo} $应用于解释HAT-P-41B的当前观察结果,并评估H $^ - $在其大气中的最新推论的可靠性。我们发现,H $^{ - } $的先前检测仅取决于单个数据点。这种用于系术检索的新指标可以补充并扩展我们的工具曲目,以更好地了解我们的模型和数据的限制。 elpd $ _ \ text {loo} $提供了在单个数据点级别询问模型的手段,这是强大地解释来自JWST的迫在眉睫的光谱信息的先决条件。

Over the last decade, exoplanetary transmission spectra have yielded an unprecedented understanding about the physical and chemical nature of planets outside our solar system. Physical and chemical knowledge is mainly extracted via fitting competing models to spectroscopic data, based on some goodness-of-fit metric. However, current employed metrics shed little light on how exactly a given model is failing at the individual data point level and where it could be improved. As the quality of our data and complexity of our models increases, there is an urgent need to better understand which observations are driving our model interpretations. Here we present the application of Bayesian leave-one-out cross-validation to assess the performance of exoplanet atmospheric models and compute the expected log pointwise predictive density (elpd$_\text{LOO}$). elpd$_\text{LOO}$ estimates the out-of-sample predictive accuracy of an atmospheric model at data point resolution providing interpretable model criticism. We introduce and demonstrate this method on synthetic HST transmission spectra of a hot Jupiter. We apply elpd$_\text{LOO}$ to interpret current observations of HAT-P-41b and assess the reliability of recent inferences of H$^-$ in its atmosphere. We find that previous detections of H$^{-}$ are dependent solely on a single data point. This new metric for exoplanetary retrievals complements and expands our repertoire of tools to better understand the limits of our models and data. elpd$_\text{LOO}$ provides the means to interrogate models at the single data point level, a prerequisite for robustly interpreting the imminent wealth of spectroscopic information coming from JWST.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源