论文标题

一般$ p $面积的解决方案的存在和结构最小化表面

Existence and structure of solutions for general $P$-area minimizing surface

论文作者

Moradifam, Amir, Rowell, Alexander

论文摘要

我们研究了与功能性$ i(u)= \int_Ω(ϕ(x,d u + f) + hu)\,dx $相关的dirichlet和neumann边界问题的解决方案的存在和结构,其中$ ϕ(x,ξ)$,其他属性,包括convex and convex and同级$ 1 $ $ $ $ $。我们表明,存在一个基本的矢量字段$ n $,该字段$ n $是所有最小化器的存在和结构的特征。我们还调查了$ \ partialω$的屏障条件下的解决方案的存在。本文的结果概括并统一了有关存在最小梯度问题和$ p- $面积最小化表面的文献中的许多结果。

We study existence and structure of solutions to the Dirichlet and Neumann boundary problems associated with minimizers of the functional $I(u)=\int_Ω (ϕ(x, D u + F)+Hu) \, dx$, where $ϕ(x, ξ)$, among other properties, is convex and homogeneous of degree $1$ with respect to $ξ$. We show that there exists an underlying vector field $N$ that characterizes the existence and structure of all minimizers. We also investigate existence of solutions under the barrier condition on $\partial Ω$. The results in this paper generalize and unify many results in the literature about existence of minimizers of least gradient problems and $P-$area minimizing surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源