论文标题

PADPAF:部分脱离剂

PaDPaF: Partial Disentanglement with Partially-Federated GANs

论文作者

Almansoori, Abdulla Jasem, Horváth, Samuel, Takáč, Martin

论文摘要

联邦学习已成为一种流行的机器学习范式,其中包括许多潜在的现实生活应用,包括推荐系统,物联网(IoT),医疗保健和自动驾驶汽车。尽管当前的大多数应用程序都集中在基于分类的任务上,但学习个性化的生成模型仍未得到探索,并且它们在异质环境中的好处仍然需要更好地理解。这项工作提出了一种新型的体系结构,结合了全球客户端敏捷和本地客户特定的生成模型。我们表明,使用标准技术来训练联合模型,我们提出的模型通过隐式地将全球一致的表示(即内容)隐含地从依赖客户依赖的变化(即样式)中删除,从而实现了隐私和个性化。使用这样的分解,个性化模型可以生成本地看不见的标签,同时保留客户的给定样式,并可以通过培训有关全球内容功能的简单线性分类器来预测所有具有高精度的客户的标签。此外,DISENTANGELLEMY仅通过共享内容来实现其他基本应用程序,例如数据匿名。广泛的实验评估证实了我们的发现,我们还讨论了提出方法的理论动机。

Federated learning has become a popular machine learning paradigm with many potential real-life applications, including recommendation systems, the Internet of Things (IoT), healthcare, and self-driving cars. Though most current applications focus on classification-based tasks, learning personalized generative models remains largely unexplored, and their benefits in the heterogeneous setting still need to be better understood. This work proposes a novel architecture combining global client-agnostic and local client-specific generative models. We show that using standard techniques for training federated models, our proposed model achieves privacy and personalization by implicitly disentangling the globally consistent representation (i.e. content) from the client-dependent variations (i.e. style). Using such decomposition, personalized models can generate locally unseen labels while preserving the given style of the client and can predict the labels for all clients with high accuracy by training a simple linear classifier on the global content features. Furthermore, disentanglement enables other essential applications, such as data anonymization, by sharing only the content. Extensive experimental evaluation corroborates our findings, and we also discuss a theoretical motivation for the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源