论文标题

n = 4个超级阳米尔斯理论中的更高点积分

Higher-Point Integrands in N=4 super Yang-Mills Theory

论文作者

Bargheer, Till, Fleury, Thiago, Gonçalves, Vasco

论文摘要

我们计算二十个p-prime运算符的五个,六和七点相关函数的整体具有一般极化,并在n = 4超级阳米尔斯理论中以两回路阶的一般极化。另外,我们按三环阶数计算五点函数的积分。使用操作员产品的扩展,我们提取一个Konishi操作员和三个二十个运算符的双环四点函数。两种方法用于计算积分。第一种方法是基于构建ANSATZ,然后使用N = 4 Super Yang-Mills理论的扭曲器空间重新印度的系数拟合数值。第二种方法基于OPE分解。以前只有极少数相关的集成量超过四个点。我们的结果可用于测试猜想,并在基于集成性的六边形方法上取得进展,以实现相关函数。

We compute the integrands of five-, six-, and seven-point correlation functions of twenty-prime operators with general polarizations at the two-loop order in N=4 super Yang-Mills theory. In addition, we compute the integrand of the five-point function at three-loop order. Using the operator product expansion, we extract the two-loop four-point function of one Konishi operator and three twenty-prime operators. Two methods were used for computing the integrands. The first method is based on constructing an ansatz, and then numerically fitting for the coefficients using the twistor-space reformulation of N=4 super Yang-Mills theory. The second method is based on the OPE decomposition. Only very few correlator integrands for more than four points were known before. Our results can be used to test conjectures, and to make progresses on the integrability-based hexagonalization approach for correlation functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源