论文标题

摩克洛夫的非一切像曲曲面理论

Equivariant non-archimedean Arakelov theory of toric varieties

论文作者

Botero, Ana María

论文摘要

在复曲面品种的情况下,我们开发了[BGS95]的非Archimedean Arakelov理论的均等版本。我们定义了出现在\ emph {loc。〜cit。}中的非架构差分形式和电流的均等类似物,并将它们与定义折叠模型的多面体复合物上的分段多项式函数相关联。特别是,我们给出了与算术杂志基团相关的绿色电流和组合描述相关的绿色电流的组合表征。

We develop an equivariant version of the non-archimedean Arakelov theory of [BGS95] in the case of toric varieties. We define the equivariant analogues of the non-archimedean differential forms and currents appearing in \emph{loc.~cit.} and relate them to piecewise polynomial functions on the polyhedral complexes defining the toric models. In particular, we give combinatorial characterizations of the Green currents associated to equivariant cycles and combinatorial descriptions of the arithmetic Chow groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源