论文标题

部分可观测时空混沌系统的无模型预测

On the function spaces of general weights

论文作者

Drihem, Douadi

论文摘要

本文的目的是双重的。首先,我们将besov spaces $ \ dot {b} _ { $ \ dot {f} _ {p,q}(\ mathbb {r}^{n},\ {t_ {k} \})$ for $ q = \ infty $。其次,根据$ p $ - 加热权重序列$ \ {t_ {k} \} $的一些合适假设\ dot {a} _ { \ end {equation*}在等效的准核心意义上,$ \ dot {a} $ $ \ in \ {\ dot {b},\ dot {f} \} $。此外,我们发现了空间巧合的必要条件,$ \ dot {a} _ {p,q}(\ mathbb {r}^{n},t_ {i}),i \ in \ in \ in \ in \ {1,2 \} $。

The aim of this paper is twofold. Firstly, we chatacterize the Besov spaces $\dot{B}_{p,q}(\mathbb{R}^{n},\{t_{k}\})$ and the Triebel-Lizorkin spaces $\dot{F}_{p,q}(\mathbb{R}^{n},\{t_{k}\})$ for $q=\infty $. Secondly, under some suitable assumptions on the $p$-admissible weight sequence $\{t_{k}\}$, we prove that \begin{equation*} \dot{A}_{p,q}(\mathbb{R}^{n},\{t_{k}\})=\dot{A}_{p,q}(\mathbb{R} ^{n},t_{j}),\quad j\in \mathbb{Z}, \end{equation*} in the sense of equivalent quasi-norms, with $\dot{A}$ $\in \{\dot{B},\dot{F}\}$. Moreover, we find a necessary and sufficient conditions for the coincidence of the spaces $\dot{A}_{p,q}(\mathbb{R}^{n},t_{i}),i\in \{1,2\}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源