论文标题
SSDNERF:神经辐射场的语义软分解
SSDNeRF: Semantic Soft Decomposition of Neural Radiance Fields
论文作者
论文摘要
神经辐射场(NERFS)在场景的群体功能参数中编码辐射。这是通过将MLP和映射到更高维空间的映射来实现的,并且已被证明可以用大量的细节捕获场景。自然,可以使用相同的参数化来编码场景的其他属性,而不仅仅是其辐射。在这方面,一个特别有趣的属性是场景的语义分解。我们介绍了一种新型技术,用于神经辐射场(名为SSDNERF)的语义软分解,该技术共同编码语义信号与场景的辐射信号结合使用。我们的方法将场景的软分子分解为语义部分,使我们能够正确编码沿着同一方向融合的多个语义类 - 现有方法的不可能的壮举。这不仅会导致场景的详细3D语义表示,而且我们还表明,用于编码的MLP的正则化效果可帮助改善语义表示。我们在共同对象的数据集上显示了最新的细分和重建结果,并演示了如何将提出的方法应用于随意捕获的自拍视频的数据集中,以临时一致的视频编辑和重新分配。
Neural Radiance Fields (NeRFs) encode the radiance in a scene parameterized by the scene's plenoptic function. This is achieved by using an MLP together with a mapping to a higher-dimensional space, and has been proven to capture scenes with a great level of detail. Naturally, the same parameterization can be used to encode additional properties of the scene, beyond just its radiance. A particularly interesting property in this regard is the semantic decomposition of the scene. We introduce a novel technique for semantic soft decomposition of neural radiance fields (named SSDNeRF) which jointly encodes semantic signals in combination with radiance signals of a scene. Our approach provides a soft decomposition of the scene into semantic parts, enabling us to correctly encode multiple semantic classes blending along the same direction -- an impossible feat for existing methods. Not only does this lead to a detailed, 3D semantic representation of the scene, but we also show that the regularizing effects of the MLP used for encoding help to improve the semantic representation. We show state-of-the-art segmentation and reconstruction results on a dataset of common objects and demonstrate how the proposed approach can be applied for high quality temporally consistent video editing and re-compositing on a dataset of casually captured selfie videos.