论文标题

一个循环解决方案中的对称性:2D,4D和6D维度的AV,AVV和AVVV图以及破坏整合线性的作用

Symmetries in one loop solutions: The AV, AVV, and AVVV diagrams, from 2D, 4D, and 6D dimensions and the role of breaking integration linearity

论文作者

Ebani, Luciana, Girardi, Thalis José, Thuorst, José Fernando

论文摘要

我们调查了在应对分歧的替代策略中定义的绿色功能之间的关系,也称为隐式正则化。我们的目标是什至时空维度的费米振幅,在该维度上,异常张量连接到有限幅度。这些张量取决于表面术语,其非零值是由有限幅度引起的,这是与整合和唯一性线性一致性的要求。保持这些术语意味着破坏动量空间的同质性,并在后来的一步中成为病房的身份。同时,消除它们允许相同振幅的多个数学表达。这是与涉及狄拉克痕迹相关的选择的结果。与差异无关,不可能满足所有需要同时消失的对称含义。尽管如此,对称性违规行为在全球范围内独立于差异,并且可以适当分配。从这个角度来看,我们提出了所有涉及的选择和不同的含义,其含义超出了所描述的情况。

We investigated relations among green functions defined in the context of an alternative strategy for coping with the divergences, also called Implicit Regularization. Our targets are fermionic amplitudes in even space-time dimensions, where anomalous tensors connect to finite amplitudes. Those tensors depend on surface terms, whose non-zero values arise from finite amplitudes as requirements of consistency with the linearity of integration and uniqueness. Maintaining these terms implies breaking momentum-space homogeneity and in a later step the Ward identities. Meanwhile, eliminating them allows more than one mathematical expression for the same amplitude. That is a consequence of choices related to the involved Dirac traces. Independently of divergences, it is impossible to satisfy all symmetry implications that require the vanishing of surface terms and linearity simultaneously. Nonetheless, the symmetry violations are globally independent of divergences and can be allocated appropriately. From this perspective, we cast all the choices involved and the different meanings, whose implications go beyond the scenario described.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源