论文标题
以这些方式行走:调整机器人控制以泛化的行为多样性
Walk These Ways: Tuning Robot Control for Generalization with Multiplicity of Behavior
论文作者
论文摘要
学识渊博的运动策略可以迅速适应与训练过程中经历的不同环境,但在分布外测试环境中失败时缺乏快速调整的机制。这需要一个缓慢而迭代的奖励和环境重新设计的循环,以便在新任务上实现良好的绩效。作为替代方案,我们建议学习一项单一的政策,该政策编码一个结构化的运动策略家族,该策略以不同的方式解决训练任务,从而导致了多种行为(MOB)。不同的策略以不同的方式推广,可以实时选择新任务或环境,从而绕开了耗时的重新培训的需求。我们释放了一个快速,健壮的露天暴力控制器,步行这些方式,可以通过可变的脚挥手,姿势和速度执行多样的步态,从而解除了多样化的下游任务:蹲下,跳跃,高速跑步,楼梯横过,楼梯横过,对铲子,节奏舞蹈,节奏舞和更多。视频和代码发布:https://gmargo11.github.io/walk-these-ways/
Learned locomotion policies can rapidly adapt to diverse environments similar to those experienced during training but lack a mechanism for fast tuning when they fail in an out-of-distribution test environment. This necessitates a slow and iterative cycle of reward and environment redesign to achieve good performance on a new task. As an alternative, we propose learning a single policy that encodes a structured family of locomotion strategies that solve training tasks in different ways, resulting in Multiplicity of Behavior (MoB). Different strategies generalize differently and can be chosen in real-time for new tasks or environments, bypassing the need for time-consuming retraining. We release a fast, robust open-source MoB locomotion controller, Walk These Ways, that can execute diverse gaits with variable footswing, posture, and speed, unlocking diverse downstream tasks: crouching, hopping, high-speed running, stair traversal, bracing against shoves, rhythmic dance, and more. Video and code release: https://gmargo11.github.io/walk-these-ways/