论文标题
对于某些加权泰勒移位,鞋面的最佳生长经常出现高环
Optimal growth of upper frequently hypercyclic functions for some weighted Taylor shifts
论文作者
论文摘要
我们对$ l^p $ - 高度环节和$ \ Mathcal {u} $的最佳增长感兴趣 - 对于某些加权的Taylor Shift Operator,通常会在单位光盘上发挥分析功能的空间。我们通过考虑$ \ MATHCAL {U} $之间的上层频繁高度频率的中间概念来统一结果 - 频繁的超循环性和超循环性。
We are interested in the optimal growth in terms of $L^p$-averages of hypercyclic and $\mathcal{U}$-frequently hypercyclic functions for some weighted Taylor shift operators acting on the space of analytic function on the unit disc. We unify the results obtained by considering intermediate notions of upper frequent hypercyclicity between the $\mathcal{U}$-frequent hypercyclicity and the hypercyclicity.