论文标题

非线性schrödinger-Poisson系统的许多签字解决方案与$ p $ -laplacian

Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system with $p$-Laplacian

论文作者

Ren, Shuo, Zhang, Huixing, Cheng, Zhen, Gao, Yan

论文摘要

在本文中,我们考虑以下具有$ p $ -laplacian \ begin {equation}的schrödinger-Poisson系统 \ begin {case} -Δ_{p} u+v(x)| u |^{p-2} u+ϕ | u |^{p-2} u = f(u)\ qquad&x \ in \ mathbb {r}^{3} {3},\ newline -Δϕ = | u |^{p}&x \ in \ mathbb {r}^{3}。 \ end {case} \ notag \ end {equation}我们研究了多个签名解决方案的存在。通过使用不变的下降流的方法,我们证明该系统具有许多不断变化的解决方案。该系统是由$ p $ laplacian和泊松方程式的Schrödinger方程组合的新系统。我们的结果补充了Zhaoli Liu,Zhiqiang Wang,Jianjun Zhang(Annali di Matematica pura ed Applicata,195(3):775-794(2016))进行的研究。

In this paper, we consider the following Schrödinger-Poisson system with $p$-laplacian \begin{equation} \begin{cases} -Δ_{p}u+V(x)|u|^{p-2}u+ϕ|u|^{p-2}u=f(u)\qquad&x\in\mathbb{R}^{3},\newline -Δϕ=|u|^{p}&x\in\mathbb{R}^{3}. \end{cases}\notag \end{equation} We investigate the existence of multiple sign-changing solutions. By using the method of invariant sets of descending flow, we prove that this system has infinitely many sign-changing solutions. This system is new one coupled by Schrödinger equation of $p$-laplacian with a Poisson equation. Our results complement the study made by Zhaoli Liu, Zhiqiang Wang, Jianjun Zhang (Annali di Matematica Pura ed Applicata, 195(3):775-794(2016)).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源