论文标题
常规分子动力学模拟,包括核量子效应:从力场到机器学习电位
Routine Molecular Dynamics Simulations Including Nuclear Quantum Effects: from Force Fields to Machine Learning Potentials
论文作者
论文摘要
我们报告了用于在Tinker-HP分子动力学(MD)软件包中明确包含核量子效应(NQE)的多CPU和多GPU的实施。该平台(表示为量子HP)利用了两种模拟策略:环形聚合物分子动力学(RPMD),以在多个复制品的扩展空间中以MD模拟为代价提供确切的结构属性,以及自适应量子热浴(ADQTB),可通过计算的经典系统和通用的经典系统来提供通用的经典系统,并提供一般的经典系统,该系统的量子均匀量,并贯穿一般的量子。大约)nqes。我们讨论了一些实施细节,有效的数值方案,并行化策略,并快速审查了我们代码的GPU加速度。我们的实施允许有效地将NQE纳入非常大的系统中的MD模拟中,这通过在具有超过200,000个原子的水箱上进行了缩放测试(使用Amoeba极化力场模拟)。我们通过使用ADQTB恒温器的DEEPMD电位来计算水性能,测试了Tinker-HP最近引入深HP机器学习电位模块的方法的兼容性。最后,我们表明该平台也与Tinker-HP的炼金术自由能估计功能兼容,并且足够快以进行模拟。因此,我们研究了NQE如何影响最近开发的Q-Amoeba水力场溶剂化的小分子的水合自由能。总体而言,量子HP平台允许用户对大型冷凝相系统进行常规的量子MD模拟,并将参与对生物学重要相互作用的量子性质进行新的启示。
We report the implementation of a multi-CPU and multi-GPU massively parallel platform dedicated to the explicit inclusion of nuclear quantum effects (NQEs) in the Tinker-HP molecular dynamics (MD) package. The platform, denoted Quantum-HP, exploits two simulation strategies: the Ring-Polymer Molecular Dynamics (RPMD) that provides exact structural properties at the cost of a MD simulation in an extended space of multiple replicas, and the adaptive Quantum Thermal Bath (adQTB) that imposes the quantum distribution of energy on a classical system via a generalized Langevin thermostat and provides computationally affordable and accurate (though approximate) NQEs. We discuss some implementation details, efficient numerical schemes, parallelization strategies and quickly review the GPU acceleration of our code. Our implementation allows an efficient inclusion of NQEs in MD simulations for very large systems, as demonstrated by scaling tests on water boxes with more than 200,000 atoms (simulated using the AMOEBA polarizable force field). We test the compatibility of the approach with Tinker-HP's recently introduced Deep-HP machine learning potentials module by computing water properties using the DeePMD potential with adQTB thermostating. Finally, we show that the platform is also compatible with the alchemical free energy estimation capabilities of Tinker-HP and fast enough to perform simulations. Therefore, we study how the NQEs affect the hydration free energy of small molecules solvated with the recently developed Q-AMOEBA water force field. Overall, the Quantum-HP platform allows users to perform routine quantum MD simulations of large condensed-phase systems and will participate to shed a new light on the quantum nature of important interactions in biological matter.