论文标题
部分微分方程和相关参数识别问题的深度学习方法
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
论文作者
论文摘要
近年来,深入学习的数学已经增长 - 这是通过数学对深度学习的概念的更深入的了解,并探讨了如何使其更加健壮的数学学习,并为数学进行了深度学习,其中深度学习算法用于解决数学中的问题。后者推广了科学机器学习领域,其中将深度学习应用于科学计算中的问题。具体而言,已经开发了越来越多的神经网络体系结构来解决特定的部分微分方程(PDE)。此类方法利用PDE固有的属性,因此比标准的前馈神经网络,复发神经网络或卷积神经网络更好地解决了PDE。这对数学建模领域产生了巨大影响,在数学建模领域,参数PDE被广泛用于建模科学和工程中最自然和物理过程。在这项工作中,我们回顾了此类方法及其用于参数研究的扩展以及解决相关的反问题。我们同样继续展示它们在某些工业应用中的相关性。
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than standard feed-forward neural networks, recurrent neural networks, or convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering. In this work, we review such methods as well as their extensions for parametric studies and for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.