论文标题
针对基于碰撞的计算的相对论抗铁磁域壁的弹性散射
Tailoring Elastic Scattering of Relativistic Antiferromagnetic Domain Walls for Collision-based Computing
论文作者
论文摘要
基于孤子的计算依赖于其独特的特性,可从正面的碰撞中运输能量和出现完整。磁性域壁通常被称为孤子,无视需要上述散射特性的严格数学定义。在这里,我们证明了在技术相关的Mn $ _2 $ au材料的示例中,用于自旋轨道扭矩引起的抗铁磁域壁的动力学的弹性和非弹性散射条件。我们表明,即使具有相反绕组数的域壁也会经历弹性散射,并且我们提出了相应的相图作为自旋轨道场强度和持续时间的函数。弹性碰撞需要最小域壁速度,我们假设域壁对产生了有吸引力的电位。相反,当域壁以较低的速度移动时,它们的碰撞是无弹性的,并导致喘息。我们的发现对于使用抗磁性旋转三位型的基于孤子的计算至关重要,我们就如何创建不创建和XOR大门的建议讨论了这些观点。
Soliton-based computing is relied on their unique properties for transporting energy and emerging intact from head-on collisions. Magnetic domain walls are often referred to as solitons disregarding the strict mathematical definition requiring the above scattering property. Here we demonstrate the conditions of elastic and inelastic scattering for spin-orbit torque-induced dynamics of antiferromagnetic domain walls on the example of a technologically relevant Mn$_2$Au material. We show that even domain walls with opposite winding numbers can experience elastic scattering and we present a corresponding phase diagram as a function of the spin-orbit field strength and duration. The elastic collision requires minimum domain walls speed which we explain assuming an attractive potential created by domain wall pair. On the contrary, when the domain walls move at lower speeds, their collision is inelastic and results in a dispersing breather. Our findings will be important for the development soliton-based computing using antiferromagnetic spintronics and we discuss these perspective on our suggestions of how to create NOT and XOR gates.