论文标题
平均场Langevin动力学混乱的均匀繁殖
Uniform-in-time propagation of chaos for mean field Langevin dynamics
论文作者
论文摘要
我们研究平均场兰格文动力学和相关的粒子系统。通过假设能量的功能性凸度,我们获得了边缘分布的$ l^p $ - 对平均场动力学的唯一不变度度量。此外,我们证明了$ l^2 $ -Wasserstein公制和相对熵的混乱统一传播。
We study the mean field Langevin dynamics and the associated particle system. By assuming the functional convexity of the energy, we obtain the $L^p$-convergence of the marginal distributions towards the unique invariant measure for the mean field dynamics. Furthermore, we prove the uniform-in-time propagation of chaos in both the $L^2$-Wasserstein metric and relative entropy.