论文标题

多层个性化联合学习,以减轻学生预测分析中的偏见

Multi-Layer Personalized Federated Learning for Mitigating Biases in Student Predictive Analytics

论文作者

Chu, Yun-Wei, Hosseinalipour, Seyyedali, Tenorio, Elizabeth, Cruz, Laura, Douglas, Kerrie, Lan, Andrew, Brinton, Christopher

论文摘要

由于数据可用性偏见,涉及根据测量活动预测成绩的常规方法,该方法涉及根据测量活动预测成绩,为少数群体/代表性不足的学生群体提供准确的结果。在本文中,我们提出了一种多层个性化联合学习(MLPFL)方法,该方法优化了推理准确性,而不是不同层的学生组标准(例如,按照每个课程中的人口统计亚组。在我们的方法中,单个学生子组的个性化模型是从全球模型中得出的,该模型是通过分布式方式培训的,该模型是通过元级别更新来培训的,这些更新是占亚组异质性的,同时保留整个数据集中存在的建模共同点。对拟议方法论的评估考虑了两个流行的下游学生建模任务,知识追踪和结果预测的案例研究,这些案例利用了学生行为的多种方式(例如,在论坛上访问了教授视频和参与论坛)。在三个现实世界的在线课程数据集上的实验显示了我们的方法对现有学生建模基准的显着改善,这证明了平均预测质量的提高和不同学生子组的差异降低。对由此产生的学生知识状态嵌入的视觉分析证实,我们的个性化方法将活动模式聚集在不同的学生亚组中,这与我们在基线上获得的绩效增强相一致。

Conventional methods for student modeling, which involve predicting grades based on measured activities, struggle to provide accurate results for minority/underrepresented student groups due to data availability biases. In this paper, we propose a Multi-Layer Personalized Federated Learning (MLPFL) methodology that optimizes inference accuracy over different layers of student grouping criteria, such as by course and by demographic subgroups within each course. In our approach, personalized models for individual student subgroups are derived from a global model, which is trained in a distributed fashion via meta-gradient updates that account for subgroup heterogeneity while preserving modeling commonalities that exist across the full dataset. The evaluation of the proposed methodology considers case studies of two popular downstream student modeling tasks, knowledge tracing and outcome prediction, which leverage multiple modalities of student behavior (e.g., visits to lecture videos and participation on forums) in model training. Experiments on three real-world online course datasets show significant improvements achieved by our approach over existing student modeling benchmarks, as evidenced by an increased average prediction quality and decreased variance across different student subgroups. Visual analysis of the resulting students' knowledge state embeddings confirm that our personalization methodology extracts activity patterns clustered into different student subgroups, consistent with the performance enhancements we obtain over the baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源