论文标题
典型康托套件的所有预测都是康托尔集
All projections of a typical Cantor set are Cantor sets
论文作者
论文摘要
在1994年,约翰·科布(John Cobb)问:给定$ n> m> k> 0 $,是否存在$ \ mathbb r^n $中的cantor设置,以使其每个投影均为$ m $ planes恰好是$ k $ dipermensional? L.Antoine(1924)和K.Borsuk(1947)以$(N,M,K)的形式描述了(N,M,K)=(2,1,1)$。 J.Cobb(1994)为$(3,2,1)$构建了示例,以$(N,M,M,M-1)$的价格构建了示例,以及O.Frolkina(2010,2019)的$(n,n-n-1,n-2)$以不同的方式,以$(N,N-1,K)的价格为$(N,N-1,N-2)$。我们表明,从以下意义上讲,这种集合是例外的。令$ \ Mathcal C(\ Mathbb r^n)$为$ \ Mathbb r^n $的所有cantor子集,该子集已符合Hausdorff Metric。众所周知,$ \ MATHCAL C(\ MATHBB R^n)$是Baire空间。我们证明,有一个密集的$g_δ$ subset $ \ mathcal p \ subset \ mathcal c(\ mathbb r^n)$,使得每个$ x \ in \ in \ mathcal p $ in \ mathcal p $和每个非零线性subspace $ l \ l \ subset $ l \ subseT \ subbb r^n $,$ x $ a $ x $ a $ x $ a $ a a cant $ x $ a a cant l o a $ x $ a aptor。这给出了同一论文(1994)中J.COBB的另一个问题的部分答案。
In 1994, John Cobb asked: given $N>m>k>0$, does there exist a Cantor set in $\mathbb R^N$ such that each of its projections into $m$-planes is exactly $k$-dimensional? Such sets were described for $(N,m,k)=(2,1,1)$ by L.Antoine (1924) and for $(N,m,m)$ by K.Borsuk (1947). Examples were constructed for the cases $(3,2,1)$ by J.Cobb (1994), for $(N,m,m-1)$ and in a different way for $(N,N-1,N-2)$ by O.Frolkina (2010, 2019), for $(N,N-1,k)$ by S.Barov, J.J.Dijkstra and M.van der Meer (2012). We show that such sets are exceptional in the following sense. Let $\mathcal C(\mathbb R^N)$ be a set of all Cantor subsets of $\mathbb R^N$ endowed with the Hausdorff metric. It is known that $\mathcal C(\mathbb R^N)$ is a Baire space. We prove that there is a dense $G_δ$ subset $\mathcal P \subset \mathcal C(\mathbb R^N)$ such that for each $X\in \mathcal P$ and each non-zero linear subspace $L \subset \mathbb R^N$, the orthogonal projection of $X$ into $L$ is a Cantor set. This gives a partial answer to another question of J.Cobb stated in the same paper (1994).