论文标题

具有子曼佛稀疏卷积网络的计算机断层扫描图像的自动分割

Automated Segmentation of Computed Tomography Images with Submanifold Sparse Convolutional Networks

论文作者

Alonso-Monsalve, Saúl, Whitehead, Leigh H., Aurisano, Adam, Sanchez, Lorena Escudero

论文摘要

定量癌症图像分析依赖于肿瘤的准确描述,这是一项非常专业且耗时的任务。因此,近年来已经广泛开发了医学成像中肿瘤自动分割的方法,这是计算机断层扫描是探索最流行的成像方式之一。但是,典型扫描中的大量3D体素对于在常规硬件中立即进行分析的整个音量都非常过分。为了克服这个问题,通常在医学成像中使用传统的卷积神经网络时,通常会实施下采样和/或重采样的过程。在本文中,我们提出了一种新的方法,该方法介绍了输入图像的稀疏过程和Submanifold稀疏卷积网络,以替代降采样。作为概念的证明,我们将这种新方法应用于肾脏癌患者的计算机断层扫描图像,获得了肾脏和肿瘤的分割表现,具有先前的方法(〜84.6%的骰子相似性系数),同时实现了计算时间的显着改善(每个训练时间2-3分钟)。

Quantitative cancer image analysis relies on the accurate delineation of tumours, a very specialised and time-consuming task. For this reason, methods for automated segmentation of tumours in medical imaging have been extensively developed in recent years, being Computed Tomography one of the most popular imaging modalities explored. However, the large amount of 3D voxels in a typical scan is prohibitive for the entire volume to be analysed at once in conventional hardware. To overcome this issue, the processes of downsampling and/or resampling are generally implemented when using traditional convolutional neural networks in medical imaging. In this paper, we propose a new methodology that introduces a process of sparsification of the input images and submanifold sparse convolutional networks as an alternative to downsampling. As a proof of concept, we applied this new methodology to Computed Tomography images of renal cancer patients, obtaining performances of segmentations of kidneys and tumours competitive with previous methods (~84.6% Dice similarity coefficient), while achieving a significant improvement in computation time (2-3 min per training epoch).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源