论文标题

学习神经参数头模型

Learning Neural Parametric Head Models

论文作者

Giebenhain, Simon, Kirschstein, Tobias, Georgopoulos, Markos, Rünz, Martin, Agapito, Lourdes, Nießner, Matthias

论文摘要

我们为基于混合神经场的完整人头提出了一种新型的3D形态模型。我们的模型的核心是神经参数表示,该表示在不连接潜在空间中删除了身份和表达式。为此,我们在规范空间中捕获一个人的身份作为签名距离场(SDF),并具有神经变形场的模型面部表达式。 In addition, our representation achieves high-fidelity local detail by introducing an ensemble of local fields centered around facial anchor points.为了促进概括,我们使用自定义的高端3D扫描设置在255个不同身份的新捕获数据集上训练模型。关于几何形状的质量和完整性,我们的数据集大大超过了可比的现有数据集,平均每次扫描约为350万个网状面。最后,我们证明我们的方法在拟合错误和重建质量方面优于最先进的方法。

We propose a novel 3D morphable model for complete human heads based on hybrid neural fields. At the core of our model lies a neural parametric representation that disentangles identity and expressions in disjoint latent spaces. To this end, we capture a person's identity in a canonical space as a signed distance field (SDF), and model facial expressions with a neural deformation field. In addition, our representation achieves high-fidelity local detail by introducing an ensemble of local fields centered around facial anchor points. To facilitate generalization, we train our model on a newly-captured dataset of over 5200 head scans from 255 different identities using a custom high-end 3D scanning setup. Our dataset significantly exceeds comparable existing datasets, both with respect to quality and completeness of geometry, averaging around 3.5M mesh faces per scan. Finally, we demonstrate that our approach outperforms state-of-the-art methods in terms of fitting error and reconstruction quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源