论文标题

在3-lie代数上的共同代数的同型代数和控制代数

Cohomology and the controlling algebra of crossed homomorphisms on 3-Lie algebras

论文作者

Hou, Shuai, Hu, Meiyan, Song, Lina, Zhou, Yanqiu

论文摘要

在本文中,首先,我们就对另一个3-lie代数的作用进行了3个lie代数的交叉同态概念,并使用从谎言代数到半领产品的同质性代数来表征它。我们还建立了交叉同态和3个lie代数的重量1的相对旋转式运算符之间的关系。接下来,我们使用第二个共同体学组构建了三个lie代数的跨代数杂法,并对交叉同构的无限变形进行分类。最后,使用较高的衍生括号,我们构建了一个$ l_ \ infty $ - 代数,其毛rer-cartan元素是跨性同构的。因此,我们获得了扭曲的$ l_ \ infty $ -Algebra,该代数控制了给定的三个代数上给定的同构的变形。

In this paper, first we give the notion of a crossed homomorphism on a 3-Lie algebra with respect to an action on another 3-Lie algebra, and characterize it using a homomorphism from a Lie algebra to the semidirect product Lie algebra. We also establish the relationship between crossed homomorphisms and relative Rota-Baxter operators of weight 1 on 3-Lie algebras. Next we construct a cohomology theory for a crossed homomorphism on 3-Lie algebras and classify infinitesimal deformations of crossed homomorphisms using the second cohomology group. Finally, using the higher derived brackets, we construct an $L_\infty$-algebra whose Maurer-Cartan elements are crossed homomorphisms. Consequently, we obtain the twisted $L_\infty$-algebra that controls deformations of a given crossed homomorphism on 3-Lie algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源