论文标题

截短的受约束系统的相对适合性,并伴有变化

Relative Well-Posedness of Truncated Constrained Systems Accompanied by Variational Calculus

论文作者

Mordukhovich, Boris S., Wu, Pengcheng, Yang, Xiaoqi

论文摘要

本文涉及优化和相关领域中灵敏度和稳定性分析的基础,主要解决截短的约束系统。我们考虑了一般模型,这些模型是由Banach空间之间的多种功能描述的,并专注于表征其良好的特性,这些特性围绕Lipschitz稳定性和相对于集合的度量规则性围绕着。调用变异分析和广义分化的工具,我们引入了相对偶然代码的新鲁棒概念。新颖的变异分析机制使我们建立了对此类性质的完整特征,并制定了与所获得的拟态性特征相关的变异微积分的基本规则。我们的大多数结果在一般的无限维度设置中有效,在有限维度上也是新的。

The paper concerns foundations of sensitivity and stability analysis in optimization and related areas, being primarily addressed truncated constrained systems. We consider general models, which are described by multifunctions between Banach spaces and concentrate on characterizing their well-posedness properties that revolve around Lipschitz stability and metric regularity relative to sets. Invoking tools of variational analysis and generalized differentiation, we introduce new robust notions of relative contingent coderivatives. The novel machinery of variational analysis leads us to establishing complete characterizations of such properties and developing basic rules of variational calculus interrelated with the obtained characterizations of well-posedness. Most of the our results valid in general infinite-dimensional settings are also new in finite dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源