论文标题
弯曲磁场中局部线性陀螺仪的分散函数的分析形式
An analytical form of the dispersion function for local linear gyrokinetics in a curved magnetic field
论文作者
论文摘要
从具有不均匀的磁场的磁化等离子体的无碰撞线性陀螺仪的方程式开始,我们提出了由于平行流和恒定磁漂移而引起的共振,在存在谐振的情况下,为产生的速度空间积分而产生了首个已知的分析,封闭式溶液。这些积分是根据众所周知的等离子体分散函数(Faddeeva&Terentev 1954; Fried&Conte 1961)编写的,从而使后续表达式更简单,可以在分析和更有效地计算数值的情况下更简单。我们证明,我们的结果融合到直磁场和二维限制中,并与Gürcan(2014)与数值求解器表示良好的一致性。举例来说,我们计算了简单的静电,离子 - 温度梯度驱动的不稳定性的确切分散关系,并将其与近似动力学和流体模型进行比较。
Starting from the equations of collisionless linear gyrokinetics for magnetised plasmas with an imposed inhomogeneous magnetic field, we present the first known analytical, closed-form solution for the resulting velocity-space integrals in the presence of resonances due to both parallel streaming and constant magnetic drifts. These integrals are written in terms of the well-known plasma dispersion function (Faddeeva & Terentev 1954; Fried & Conte 1961), rendering the subsequent expressions simpler to treat analytically and more efficient to compute numerically. We demonstrate that our results converge to the well-known ones in the straight-magnetic-field and two-dimensional limits, and show good agreement with the numerical solver by Gürcan (2014). By way of example, we calculate the exact dispersion relation for a simple electrostatic, ion-temperature-gradient-driven instability, and compare it with approximate kinetic and fluid models.