论文标题
发现冲突链的中尺度
Discovering the mesoscale for chains of conflict
论文作者
论文摘要
与许多社会过程一样,冲突是及时跨越多个尺度的相关事件,从瞬时到多年发展,以及从一个邻里到大陆的太空中。然而,在连接多个量表,事件之间因果关系的正式治疗以及事件如何相互关系的不确定性方面,几乎没有系统的工作。我们开发了一种方法来提取与武装冲突有关这些限制的事件链的方法。我们的方法明确说明了从详细的数据集,武装冲突事件和位置数据项目中聚集单个事件的可调节空间和时间尺度。有了它,我们发现了一个从一个星期到几个月的中尺度,从数十到几百公里,在那里出现了长期相关性和与冲突事件有关的非平凡动态。重要的是,在野外研究中引用的因果机制可以识别出中尺度的群集虽然仅从冲突统计中提取。我们利用我们的技术来识别自然融合不确定性的冲突热点周围因果关系的区域。因此,我们展示了系统的,数据驱动的程序如何提取社会对象进行研究,从而为审查和预测其他过程之间的冲突提供了范围。
Conflicts, like many social processes, are related events that span multiple scales in time, from the instantaneous to multi-year developments, and in space, from one neighborhood to continents. Yet, there is little systematic work on connecting the multiple scales, formal treatment of causality between events, and measures of uncertainty for how events are related to one another. We develop a method for extracting related chains of events that addresses these limitations with armed conflict. Our method explicitly accounts for an adjustable spatial and temporal scale of interaction for clustering individual events from a detailed data set, the Armed Conflict Event & Location Data Project. With it, we discover a mesoscale ranging from a week to a few months and from tens to a few hundred kilometers, where long-range correlations and nontrivial dynamics relating conflict events emerge. Importantly, clusters in the mesoscale, while extracted only from conflict statistics, are identifiable with causal mechanism cited in field studies. We leverage our technique to identify zones of causal interaction around conflict hotspots that naturally incorporate uncertainties. Thus, we show how a systematic, data-driven procedure extracts social objects for study, providing a scope for scrutinizing and predicting conflict amongst other processes.