论文标题

Koszul综合体上的迭代映射锥及其用于完成交叉环的应用

Iterated Mapping Cones on the Koszul Complex and Their Application to Complete Intersection Rings

论文作者

Nguyen, Van C., Veliche, Oana

论文摘要

令$(R,\ Mathfrak M,\ Mathsf K)$为完整的交叉点本地环,$ k $是$ \ Mathfrak m $的最小发电机,而$ a = h(k)$是其同源代数。我们建立了涉及$ a $组件的直接总和的精确序列,并将这些序列的地图的图像表示为构建$ k $的迭代映射锥的同源物。作为这种迭代映射锥构建的应用,我们恢复了$ r $的残留场$ \ mathsf k $的最低自由分辨率,与泰特(Tate)通过相邻变量和杀死周期构建的知名分辨率无关。通过我们的构造,差分图可以明确表示为以某些组合图案排列的矩阵块。

Let $(R,\mathfrak m, \mathsf k)$ be a complete intersection local ring, $K$ be the Koszul complex on a minimal set of generators of $\mathfrak m$, and $A=H(K)$ be its homology algebra. We establish exact sequences involving direct sums of the components of $A$ and express the images of the maps of these sequences as homologies of iterated mapping cones built on $K$. As an application of this iterated mapping cone construction, we recover a minimal free resolution of the residue field $\mathsf k$ over $R$, independent from the well-known resolution constructed by Tate by adjoining variables and killing cycles. Through our construction, the differential maps can be expressed explicitly as blocks of matrices, arranged in some combinatorial patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源