论文标题

长期COVID-19的流动性深度学习模型大流行预测和政策影响分析

A Mobility-Aware Deep Learning Model for Long-Term COVID-19 Pandemic Prediction and Policy Impact Analysis

论文作者

Guo, Danfeng, Huang, Zijie, Hao, Junheng, Sun, Yizhou, Wang, Wei, Terzopoulos, Demetri

论文摘要

针对疾病扩散分析的大流行(流行病)建模一直是一个流行的研究主题,尤其是在2019年Covid-19爆发之后。一些代表性模型,包括基于SIR的深度学习预测模型,显示出令人满意的表现。但是,对他们来说,一个主要的缺点是他们的长期预测能力缺乏。尽管图形卷积网络(GCN)也表现良好,但它们的边缘表示不包含完整的信息,并且可能导致偏见。另一个缺点是他们通常使用无法预测的输入功能。因此,这些模型无法预测未来。我们提出了一个可以进一步传播预测未来的模型,并且具有更好的优势表示。特别是,我们将大流行建模为一个时空图,其边缘代表感染的过渡,并由我们的模型学习。我们使用包含具有注意机制的GCN和递归结构(GRU)的两流框架。我们的模型实现了移动性分析,为公共卫生研究人员和政策制定者提供了有效的工具箱,以预测主动控制移动性的不同锁定策略如何影响大流行病的传播。实验表明,我们的模型在其长期预测能力上的表现优于其他人。此外,我们模拟了某些政策的影响,并预测了它们对感染控制的影响。

Pandemic(epidemic) modeling, aiming at disease spreading analysis, has always been a popular research topic especially following the outbreak of COVID-19 in 2019. Some representative models including SIR-based deep learning prediction models have shown satisfactory performance. However, one major drawback for them is that they fall short in their long-term predictive ability. Although graph convolutional networks (GCN) also perform well, their edge representations do not contain complete information and it can lead to biases. Another drawback is that they usually use input features which they are unable to predict. Hence, those models are unable to predict further future. We propose a model that can propagate predictions further into the future and it has better edge representations. In particular, we model the pandemic as a spatial-temporal graph whose edges represent the transition of infections and are learned by our model. We use a two-stream framework that contains GCN and recursive structures (GRU) with an attention mechanism. Our model enables mobility analysis that provides an effective toolbox for public health researchers and policy makers to predict how different lock-down strategies that actively control mobility can influence the spread of pandemics. Experiments show that our model outperforms others in its long-term predictive power. Moreover, we simulate the effects of certain policies and predict their impacts on infection control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源