论文标题

Virasoro块和重新训练形式主义

Virasoro blocks and the reparametrization formalism

论文作者

Nguyen, Kevin

论文摘要

最近提出了一种有效的理论,该理论旨在计算大中央电荷的Virasoro身份块,该理论是根据双向侧面顶点之间的再载体化/阴影模式的传播表示的。在本文中,我通过根据标准概念重新设计了这种有效理论的形式理论框架:保形几何,生成功能和Feynman图。这种形式主义的关键要素是双向顶点算子或重新训练两点函数,该功能可将任意应力张量插入插入到参考的两点函数中。我还建议将旨在计算通用Virasoro块的形式主义扩展。

An effective theory designed to compute Virasoro identity blocks at large central charge, expressed in terms of the propagation of a reparametrization/shadow mode between bilocal vertices, was recently put forward. In this paper I provide the formal theoretical framework underlying this effective theory by reformulating it in terms of standard concepts : conformal geometry, generating functionals and Feynman diagrams. A key ingredient to this formalism is the bilocal vertex operator, or reparametrized two-point function, which is shown to generate arbitrary stress tensor insertions into a two-point function of reference. I also suggest an extension of the formalism designed to compute generic Virasoro blocks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源