论文标题
测量模拟量子模拟中的任意物理特性
Measuring Arbitrary Physical Properties in Analog Quantum Simulation
论文作者
论文摘要
模拟量子模拟中的一个核心挑战是表征实验中产生的量子状态的理想物理特性。但是,在常规方法中,提取任意信息需要在许多不同的基础上进行测量,这需要高度控制当今的量子设备可能没有。在这里,我们提出和分析了一种可扩展的协议,该方案利用了通用量子动力学的厄法德性质,从而有效提取了许多物理特性。该协议不需要复杂的控件,并且可以在当今的模拟量子仿真平台中普遍实现。我们的协议涉及将预定状态的辅助自由度引入感兴趣的系统,在特定实验平台的本地汉密尔顿动力学下淬灭联合系统,然后以单个固定基础在全球范围内进行测量。我们表明,原始量子状态的任意信息包含在此类测量数据中,并且可以使用经典数据处理过程提取。我们通过许多示例在数值上证明了我们的方法,包括纠缠熵的测量,多体的Chern数以及中性原子阵列系统中的各种超导订单,分别在光学晶格上的骨气和费米子颗粒,仅假定现有的技术功能。我们的协议令人兴奋地有望克服有限的可控性,从而增强了近期量子技术的多功能性和效用。
A central challenge in analog quantum simulation is to characterize desirable physical properties of quantum states produced in experiments. However, in conventional approaches, the extraction of arbitrary information requires performing measurements in many different bases, which necessitates a high level of control that present-day quantum devices may not have. Here, we propose and analyze a scalable protocol that leverages the ergodic nature of generic quantum dynamics, enabling the efficient extraction of many physical properties. The protocol does not require sophisticated controls and can be generically implemented in analog quantum simulation platforms today. Our protocol involves introducing ancillary degrees of freedom in a predetermined state to a system of interest, quenching the joint system under Hamiltonian dynamics native to the particular experimental platform, and then measuring globally in a single, fixed basis. We show that arbitrary information of the original quantum state is contained within such measurement data, and can be extracted using a classical data-processing procedure. We numerically demonstrate our approach with a number of examples, including the measurements of entanglement entropy, many-body Chern number, and various superconducting orders in systems of neutral atom arrays, bosonic and fermionic particles on optical lattices, respectively, only assuming existing technological capabilities. Our protocol excitingly promises to overcome limited controllability and, thus, enhance the versatility and utility of near-term quantum technologies.