论文标题

FEMA-FS:用于功能选择的有限元计算机

FEMa-FS: Finite Element Machines for Feature Selection

论文作者

Biaggi, Lucas, Papa, João P., Costa, Kelton A. P, Pereira, Danillo R., Passos, Leandro A.

论文摘要

识别异常已成为计算机网络中安全和保护程序的主要策略之一。在这种情况下,基于机器学习的方法是一种优雅的解决方案,可以识别此类情况并学习无关紧要的信息,从而可以减少识别时间和可能的准确性增益。本文提出了一种新的功能选择方法,称为“有限元计算机”用于特征选择(FEMA-FS),该机器使用有限元素的框架来识别给定数据集中最相关的信息。尽管可以将FEMA-FS应用于任何应用程序域,但已在计算机网络中的异常检测中进行了评估。两个数据集上的结果显示出令人鼓舞的结果。

Identifying anomalies has become one of the primary strategies towards security and protection procedures in computer networks. In this context, machine learning-based methods emerge as an elegant solution to identify such scenarios and learn irrelevant information so that a reduction in the identification time and possible gain in accuracy can be obtained. This paper proposes a novel feature selection approach called Finite Element Machines for Feature Selection (FEMa-FS), which uses the framework of finite elements to identify the most relevant information from a given dataset. Although FEMa-FS can be applied to any application domain, it has been evaluated in the context of anomaly detection in computer networks. The outcomes over two datasets showed promising results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源