论文标题

Physdiff:物理引导的人类运动扩散模型

PhysDiff: Physics-Guided Human Motion Diffusion Model

论文作者

Yuan, Ye, Song, Jiaming, Iqbal, Umar, Vahdat, Arash, Kautz, Jan

论文摘要

denoising扩散模型具有产生多样化和现实的人类动作的巨大希望。然而,现有运动扩散模型在很大程度上忽略了扩散过程中物理定律,并且通常会以明显的伪像,例如浮动,脚滑和地面穿透性产生物理上难以置信的运动。这严重影响了生成动作的质量,并限制了其现实应用程序。为了解决这个问题,我们提出了一种新颖的物理引导运动扩散模型(Physdiff),该模型将物理约束纳入扩散过程。具体而言,我们提出了一个基于物理的运动投影模块,该模块使用物理模拟器中的运动模仿将扩散步骤的转化运动投射到物理上可见的运动上。在下一个扩散步骤中进一步使用了预测的运动,以指导denoising扩散过程。直观地,在我们的模型中使用物理学会迭代地将运动拉向物理上可行的空间,这是无法通过简单的后处理来实现的。大规模人体运动数据集的实验表明,我们的方法可实现最新的运动质量,并急剧提高身体合理性(所有数据集> 78%)。

Denoising diffusion models hold great promise for generating diverse and realistic human motions. However, existing motion diffusion models largely disregard the laws of physics in the diffusion process and often generate physically-implausible motions with pronounced artifacts such as floating, foot sliding, and ground penetration. This seriously impacts the quality of generated motions and limits their real-world application. To address this issue, we present a novel physics-guided motion diffusion model (PhysDiff), which incorporates physical constraints into the diffusion process. Specifically, we propose a physics-based motion projection module that uses motion imitation in a physics simulator to project the denoised motion of a diffusion step to a physically-plausible motion. The projected motion is further used in the next diffusion step to guide the denoising diffusion process. Intuitively, the use of physics in our model iteratively pulls the motion toward a physically-plausible space, which cannot be achieved by simple post-processing. Experiments on large-scale human motion datasets show that our approach achieves state-of-the-art motion quality and improves physical plausibility drastically (>78% for all datasets).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源