论文标题

轨道优化的配对电子模拟在被困的离子量子计算机上

Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers

论文作者

Zhao, Luning, Goings, Joshua, Wright, Kenneth, Nguyen, Jason, Kim, Jungsang, Johri, Sonika, Shin, Kyujin, Kyoung, Woomin, Fuks, Johanna I., Rhee, June-Koo Kevin, Rhee, Young Min

论文摘要

变异量子本素(VQE)是解决近期量子计算机上电子结构问题的最有希望的方法之一。在实践中,VQE的一个关键挑战是,鉴于近期量子计算机上嘈杂的量子操作的现实,必须在VQE ANSATZ的表达性与实施ANSATZ所需的量子门的数量之间取得平衡。在这项工作中,我们考虑了与单一耦合集群与单打和双打(UCCSD)ANSATZ的轨道优化成对相关的近似,并报告了陷阱离子体系结构的高效量子电路实现。我们表明,轨道优化可以通过测量低阶减少密度矩阵(RDMS)来恢复重要的额外电子相关能量,而无需牺牲效率。在小分子的解离时,该方法在使用无噪声量子模拟器运行时,在强相关方案中给出了准确的预测。在IONQ的Harmony和ARIA捕获量子计算机上,我们运行的端到端VQE算法最多12 QUBITS和72个变异参数 - 最大的完整VQE模拟,在量子硬件上具有相关的波函数。我们发现,即使没有误差缓解技术,不同分子几何形状的预测相对能与无噪声模拟器非常吻合。

Variational quantum eigensolvers (VQE) are among the most promising approaches for solving electronic structure problems on near-term quantum computers. A critical challenge for VQE in practice is that one needs to strike a balance between the expressivity of the VQE ansatz versus the number of quantum gates required to implement the ansatz, given the reality of noisy quantum operations on near-term quantum computers. In this work, we consider an orbital-optimized pair-correlated approximation to the unitary coupled cluster with singles and doubles (uCCSD) ansatz and report a highly efficient quantum circuit implementation for trapped-ion architectures. We show that orbital optimization can recover significant additional electron correlation energy without sacrificing efficiency through measurements of low-order reduced density matrices (RDMs). In the dissociation of small molecules, the method gives qualitatively accurate predictions in the strongly-correlated regime when running on noise-free quantum simulators. On IonQ's Harmony and Aria trapped-ion quantum computers, we run end-to-end VQE algorithms with up to 12 qubits and 72 variational parameters - the largest full VQE simulation with a correlated wave function on quantum hardware. We find that even without error mitigation techniques, the predicted relative energies across different molecular geometries are in excellent agreement with noise-free simulators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源