论文标题
第一个特征函数的最小沉浸式浸入共形的平面$ 3 $ -TORI和$ 4 $ -TORI SPHERES
Classification of Minimal Immersions of Conformally Flat $3$-Tori and $4$-Tori in Spheres by The First Eigenfunctions
论文作者
论文摘要
本文致力于研究最小浸入flat $ n $ tori的球体中,尤其是那些被第一本征函数浸入的球体(这种浸入称为$λ_1$ - 少量浸入),这在光谱几何形状中也起着重要的作用。众所周知,只有两个非统一的$λ_1$ -Minimal $ 2 $ -TORI在球体中,它们都是平坦的。对于较高维度的情况,Clifford $ n $ -torus in $ \ Mathbb {s}^{2n-1} $可能是文献中唯一已知的示例。在本文中,通过讨论一般的最小平面$ n $ tori的一般结构,我们构建了许多新的示例$λ_1$ -Minimal flat $ 3 $ -TORI和$ 4 $ -TORI。与$ 2 $ -TORI的刚性相反,我们表明存在一个$ 2 $ - 参数属于非库存$λ_1$ -Minimal flat $ 4 $ -TORI的家族。事实证明,我们构建了所有$λ_1$ - 最小沉浸于保形的flat $ 3 $ -TORI和4 $ -TORI的示例。该分类涉及对晶格中最短矢量的一些详细调查,这些调查也可用于解决Berger在Flat $ 3 $ -TORI和$ 4 $ -TORI上的问题。证明第一个EignValue的扩张不变函数$λ_1(g)v(g)^{\ frac {\ frac {2} {n}} $被证明在所有平面$ 3 $ -TORI和$ 4 $ -TORI中都具有最大值。
This paper is devoted to the study of minimal immersions of flat $n$-tori into spheres, especially those immersed by the first eigenfunctions (such immersion is called $λ_1$-minimal immersion), which also play important roles in spectral geometry. It is known that there are only two non-congruent $λ_1$-minimal $2$-tori in spheres, which are both flat. For higher dimensional case, the Clifford $n$-torus in $\mathbb{S}^{2n-1}$ might be the only known example in the literature. In this paper, by discussing the general construction of homogeneous minimal flat $n$-tori in spheres, we construct many new examples of $λ_1$-minimal flat $3$-tori and $4$-tori. In contrast to the rigidity in the case of $2$-tori, we show that there exists a $2$-parameter family of non-congruent $λ_1$-minimal flat $4$-tori. It turns out that the examples we constructed exhaust all $λ_1$-minimal immersions of conformally flat $3$-tori and $4$-tori in spheres. The classification involves some detailed investigations of shortest vectors in lattices, which can also be used to solve the Berger's problem on flat $3$-tori and $4$-tori. The dilation-invariant functional $λ_1(g)V(g)^{\frac{2}{n}}$ about the first eignvalue is proved to have maximal value among all flat $3$-tori and $4$-tori.