论文标题
深入预言:将监督学习与物理信息的神经网络相结合
Deep-pretrained-FWI: combining supervised learning with physics-informed neural network
论文作者
论文摘要
准确的速度模型对于制作良好的地震图像至关重要。执行速度模型构建(VMB)任务的常规方法取决于反向方法,尽管被广泛使用,但它是需要强烈而专业的人类监督的不良问题。卷积神经网络(CNN)已被广泛研究,作为解决VMB任务的替代方法。文献中研究了两种主要方法:有监督的培训和物理知识的神经网络(PINN)。有监督的培训给出了一些概括问题,因为结构,训练和测试集必须相似。一些作品与CNN集成了全波倒置(FWI),并在Pinn框架中定义了VMB的问题。在这种情况下,CNN稳定了反转,像正规化器一样起作用并避免了与局部最小相关的问题,在某些情况下,避免了初始速度模型。我们的方法通过使用转移学习开始反演,结合了受监督和物理信息的神经网络。根据培训的培训,使用有监督的方法获得了预训练的CNN,并具有简单和简单的数据集,以捕获初始FWI迭代时的主要速度趋势。我们表明,转移学习减少了过程的不确定性,加速了模型收敛,并提高了迭代过程的最终得分。
An accurate velocity model is essential to make a good seismic image. Conventional methods to perform Velocity Model Building (VMB) tasks rely on inverse methods, which, despite being widely used, are ill-posed problems that require intense and specialized human supervision. Convolutional Neural Networks (CNN) have been extensively investigated as an alternative to solve the VMB task. Two main approaches were investigated in the literature: supervised training and Physics-Informed Neural Networks (PINN). Supervised training presents some generalization issues since structures, and velocity ranges must be similar in training and test set. Some works integrated Full-waveform Inversion (FWI) with CNN, defining the problem of VMB in the PINN framework. In this case, the CNN stabilizes the inversion, acting like a regularizer and avoiding local minima-related problems and, in some cases, sparing an initial velocity model. Our approach combines supervised and physics-informed neural networks by using transfer learning to start the inversion. The pre-trained CNN is obtained using a supervised approach based on training with a reduced and simple data set to capture the main velocity trend at the initial FWI iterations. We show that transfer learning reduces the uncertainties of the process, accelerates model convergence, and improves the final scores of the iterative process.