论文标题

MapinWild:一个遥感数据集,用于解决问题是什么使大自然变得狂野

MapInWild: A Remote Sensing Dataset to Address the Question What Makes Nature Wild

论文作者

Ekim, Burak, Stomberg, Timo T., Roscher, Ribana, Schmitt, Michael

论文摘要

抗针压(即人类对环境的影响)是生物多样性丧失的最大原因之一。相比之下,荒野地区是不受干扰的生态过程的家园。但是,荒野一词没有生物物理定义。取而代之的是,荒野更像是一种哲学或文化概念,因此不能轻易以技术方式划定或分类。在本文中,(i)我们通过应用于卫星图像(II)的机器学习介绍了荒野映射的任务,并发布了MapinWild,这是一个大规模的基准数据集,该数据集策划了该任务。 MapInWild是一个多模式数据集,包括从各种地球观测传感器组中获得并形成的各种地理。该数据集由8144张图像组成,形状为1920 x 1920像素,尺寸约为350 GB。这些图像用来自世界保护区的世界数据库(严格的自然保护区,荒野地区和国家公园)衍生而成的三个类别。对于数据集,该数据集应作为可解释的机器学习和环境遥感等领域发展的测试床,我们希望能加深对我们对“使自然变得疯狂的问题?”的理解的理解。

Antrophonegic pressure (i.e. human influence) on the environment is one of the largest causes of the loss of biological diversity. Wilderness areas, in contrast, are home to undisturbed ecological processes. However, there is no biophysical definition of the term wilderness. Instead, wilderness is more of a philosophical or cultural concept and thus cannot be easily delineated or categorized in a technical manner. With this paper, (i) we introduce the task of wilderness mapping by means of machine learning applied to satellite imagery (ii) and publish MapInWild, a large-scale benchmark dataset curated for that task. MapInWild is a multi-modal dataset and comprises various geodata acquired and formed from a diverse set of Earth observation sensors. The dataset consists of 8144 images with a shape of 1920 x 1920 pixels and is approximately 350 GB in size. The images are weakly annotated with three classes derived from the World Database of Protected Areas - Strict Nature Reserves, Wilderness Areas, and National Parks. With the dataset, which shall serve as a testbed for developments in fields such as explainable machine learning and environmental remote sensing, we hope to contribute to a deepening of our understanding of the question "What makes nature wild?".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源