论文标题
适用于Nambu-Goto string的非主要能量量张量的共形理论的注释
Notes on conformal theory with nonprimary energy-momentum tensor that applies to the Nambu-Goto string
论文作者
论文摘要
我研究了更高衍生的保形理论,该理论显示了如何分辨出Nambu-Goto和Polyakov弦。它的能量量张量是保守的,无可露的,但不属于单位操作员的保形家族。为了在这种情况下实施保形不变性,我开发了一种新技术,该技术明确说明了运动的量子方程,并产生了奇异产品。我表明,这种非主要能量弹药张量产生的保形转换形成了一个具有中央延伸的lie代数,在路径综合形式主义中,对中央电荷的对数具有分歧的贡献。我演示了如何在字符串敏感性中取消对数差异,并在一个循环中重现先前从KPZ-DDK偏离的偏差。
I investigate the higher-derivative conformal theory which shows how the Nambu-Goto and Polyakov strings can be told apart. Its energy-momentum tensor is conserved, traceless but does not belong to the conformal family of the unit operator. To implement conformal invariance in this case, I develop the new technique that explicitly accounts for the quantum equation of motion and results in singular products. I show that the conformal transformations generated by such a nonprimary energy-momentum tensor form a Lie algebra with a central extension which in the path-integral formalism gives a logarithmically divergent contribution to the central charge. I demonstrate how the logarithmic divergence is canceled in the string susceptibility and reproduce the previously obtained deviation from KPZ-DDK at one loop.