论文标题

通过同时获得的脑电图和fMRI的深层编码来推断潜在的神经来源

Inferring latent neural sources via deep transcoding of simultaneously acquired EEG and fMRI

论文作者

Liu, Xueqing, Tu, Tao, Sajda, Paul

论文摘要

同时EEG-FMRI是一种多模式的神经影像学技术,可提供互补的空间和时间分辨率。具有挑战性的是开发了原则性和可解释的方法来融合方式,特别是方法,可以推断出代表神经活动的潜在源空间。在本文中,我们在转码的框架内解决了此推论问题 - 从特定的编码(模态)映射到解码(潜在源空间),然后将潜在源空间编码为其他模态。具体而言,我们开发了一种对称方法,该方法由循环卷积转码器组成,该卷积转码器将EEG转换为fMRI,反之亦然。如果没有任何先验了解血液动力学响应函数或铅场矩阵,完整的数据驱动方法利用了模态和潜在源空间之间的时间和空间关系来学习这些映射。对于模拟和真实的EEG-FMRI数据,我们量化了如何将模态从一个转化到另一个以及恢复的源空间的方式,所有模态都对看不见的数据进行了评估。除了启用一种对称性推断潜在源空间的新方法外,该方法还可以看作是低成本的计算神经影像学 - 即,从“低成本” EEG数据中生成“昂贵” fMRI BOLD图像。

Simultaneous EEG-fMRI is a multi-modal neuroimaging technique that provides complementary spatial and temporal resolution. Challenging has been developing principled and interpretable approaches for fusing the modalities, specifically approaches enabling inference of latent source spaces representative of neural activity. In this paper, we address this inference problem within the framework of transcoding -- mapping from a specific encoding (modality) to a decoding (the latent source space) and then encoding the latent source space to the other modality. Specifically, we develop a symmetric method consisting of a cyclic convolutional transcoder that transcodes EEG to fMRI and vice versa. Without any prior knowledge of either the hemodynamic response function or lead field matrix, the complete data-driven method exploits the temporal and spatial relationships between the modalities and latent source spaces to learn these mappings. We quantify, for both the simulated and real EEG-fMRI data, how well the modalities can be transcoded from one to another as well as the source spaces that are recovered, all evaluated on unseen data. In addition to enabling a new way to symmetrically infer a latent source space, the method can also be seen as low-cost computational neuroimaging -- i.e. generating an 'expensive' fMRI BOLD image from 'low cost' EEG data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源