论文标题

北极海冰厚度分布的季节性演变

Seasonal evolution of the Arctic sea ice thickness distribution

论文作者

Toppaladoddi, Srikanth, Moon, Woosok, Wettlaufer, John S.

论文摘要

Thorndike等人,(\ emph {因此,它提供了在气候模型中处理海冰厚度类别的概念基础。然而,由于使用重新分配函数$ψ$处理机械变形,该方法在数学上没有关闭,作者指出``本理论遭受了负担重,任意重新分布$ψ。$'$''''''''' $ψ$如何用$ g(h)$编写,从而解决了数学封闭问题并根据fokker-planck方程来编写理论,他们在分析上求解以定量复制观察到的冬季$ g(h)$。在这里,我们将这种方法扩展到包括开放水的方法,通过为其Fokker-Planck方程式制定新的边界条件,然后将其与Semtner的观察一致的Sea-Ice增长模型(\ emph {J。Phys。Ecearogr。我们发现,随着冰的损失,$ g(h)$从单一到双峰分布的过渡,这与观察结果一致。为了理解这种过渡的原因,我们使用等效的langevin方程公式构建了对系统的更简单描述,并在数值上求解了所得随机的普通微分方程。最后,我们在不同的气候条件下以$ g(h)$解决了福克 - 普兰克方程,以研究开放水分的演变。

The Thorndike et al., (\emph{J. Geophys. Res.} {\bf 80} 4501, 1975) theory of the ice thickness distribution, $g(h)$, treats the dynamic and thermodynamic aggregate properties of the ice pack in a novel and physically self-consistent manner. Therefore, it has provided the conceptual basis of the treatment of sea-ice thickness categories in climate models. The approach, however, is not mathematically closed due to the treatment of mechanical deformation using the redistribution function $ψ$, the authors noting ``The present theory suffers from a burdensome and arbitrary redistribution function $ψ.$'' Toppaladoddi and Wettlaufer (\emph{Phys. Rev. Lett.} {\bf 115} 148501, 2015) showed how $ψ$ can be written in terms of $g(h)$, thereby solving the mathematical closure problem and writing the theory in terms of a Fokker-Planck equation, which they solved analytically to quantitatively reproduce the observed winter $g(h)$. Here, we extend this approach to include open water by formulating a new boundary condition for their Fokker-Planck equation, which is then coupled to the observationally consistent sea-ice growth model of Semtner (\emph{J. Phys. Oceanogr.} {\bf 6}(3), 379, 1976) to study the seasonal evolution of $g(h)$. We find that as the ice thins, $g(h)$ transitions from a single- to a double-peaked distribution, which is in agreement with observations. To understand the cause of this transition, we construct a simpler description of the system using the equivalent Langevin equation formulation and solve the resulting stochastic ordinary differential equation numerically. Finally, we solve the Fokker-Planck equation for $g(h)$ under different climatological conditions to study the evolution of the open-water fraction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源