论文标题

使用系统级合成的预测安全过滤器

Predictive safety filter using system level synthesis

论文作者

Leeman, Antoine P., Köhler, Johannes, Benanni, Samir, Zeilinger, Melanie N.

论文摘要

安全过滤器提供了模块化技术,以增强具有约束满意度形式的安全保证的潜在不安全控制输入(例如,从基于学习的控制器或人类)。在本文中,我们提出了改进的模型预测安全过滤器(MPSF)公式,该公式将系统级合成技术纳入了设计中。由此产生的SL-MPSF方案可确保线性系统的安全性在扩大的安全集中受到界定干扰。与现有的MPSF公式相比,它需要对潜在不安全的控制输入的严重和频繁修改才能证明安全性。此外,我们提出了SL -MPSF公式的明确变体,该变体可保持可扩展性,并减少所需的在线计算工作 - MPSF的主要缺点。与最先进的MPSF公式相比,建议的系统级安全过滤器配方的好处是使用数值示例证明的。

Safety filters provide modular techniques to augment potentially unsafe control inputs (e.g. from learning-based controllers or humans) with safety guarantees in the form of constraint satisfaction. In this paper, we present an improved model predictive safety filter (MPSF) formulation, which incorporates system level synthesis techniques in the design. The resulting SL-MPSF scheme ensures safety for linear systems subject to bounded disturbances in an enlarged safe set. It requires less severe and frequent modifications of potentially unsafe control inputs compared to existing MPSF formulations to certify safety. In addition, we propose an explicit variant of the SL-MPSF formulation, which maintains scalability, and reduces the required online computational effort - the main drawback of the MPSF. The benefits of the proposed system level safety filter formulations compared to state-of-the-art MPSF formulations are demonstrated using a numerical example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源