论文标题
$ u(\ frak h)$ - 差分运算符的Lie代数上的免费模块
$U(\frak h)$-free modules over the Lie algebras of differential operators
论文作者
论文摘要
在本文中,我们考虑了Weyl类型的Lie代数上的一些非重量模块。首先,我们确定限制$ u(\ frak h)$的模块在圆圈上的差分运算符的lie代数上没有排名$ 1 $。然后,我们确定了准芬矿量最高重量模块和$ u(\ frak h)$的张量产品的必要条件 - 免费模块是不可修复的,并且只有当相应的最高重量模块和$ u(\ frak h)$ - 免费模块是ISOMOMORPHIC的情况下,只有当相应的最高重量模块和相应的最高重量模块和相应的最高重量模块和相应的时,才能获得同构的同构。最后,在一般情况下,我们将这种结果扩展到差分运算符的Lie代数。
In this paper, we consider some non-weight modules over the Lie algebra of Weyl type. First, we determine the modules whose restriction to $U(\frak h)$ are free of rank $1$ over the Lie algebra of differential operators on the circle. Then we determine the necessary and sufficient conditions for the tensor products of quasi-finite highest weight modules and $U(\frak h)$-free modules to be irreducible, and obtain that any two such tensor products are isomorphic if and only if the corresponding highest weight modules and $U(\frak h)$-free modules are isomorphic. Finally, we extend such results to the Lie algebras of differential operators in the general case.