论文标题

FBLNET:用于驾驶员注意预测的反馈循环网络

FBLNet: FeedBack Loop Network for Driver Attention Prediction

论文作者

Chen, Yilong, Nan, Zhixiong, Xiang, Tao

论文摘要

从驾驶角度来预测驾驶员注意力的问题是,由于其对自动驾驶和辅助驾驶系统的重要意义,因此增加了研究重点。驾驶体验对于安全驾驶极为重要,熟练的驾驶员能够根据驾驶体验毫不费力地预测即将到来的危险(在变得显着)并迅速注意相应的区域。但是,非目标驾驶体验很难建模,因此现有方法中不存在模拟驾驶员体验积累过程的机制,并且当前方法通常遵循显着性预测方法的技术线来预测驾驶员的注意。在本文中,我们提出了一个反馈循环网络(FBLNET),该网络试图对驾驶体验积累过程进行建模。通过过时的迭代,FBLNET产生了具有历史悠久和长期时间信息的丰富知识的增量知识。我们模型中的增量知识就像人类的驾驶体验一样。在增量知识的指导下,我们的模型融合了从输入图像中提取的CNN功能和变压器功能,以预测驾驶员的注意力。我们的模型比现有方法具有可靠的优势,从而在两个驾驶员注意力基准数据集上实现了出色的性能提高。

The problem of predicting driver attention from the driving perspective is gaining increasing research focus due to its remarkable significance for autonomous driving and assisted driving systems. The driving experience is extremely important for safe driving,a skilled driver is able to effortlessly predict oncoming danger (before it becomes salient) based on the driving experience and quickly pay attention to the corresponding zones. However, the nonobjective driving experience is difficult to model, so a mechanism simulating the driver experience accumulation procedure is absent in existing methods, and the current methods usually follow the technique line of saliency prediction methods to predict driver attention. In this paper, we propose a FeedBack Loop Network (FBLNet), which attempts to model the driving experience accumulation procedure. By over-and-over iterations, FBLNet generates the incremental knowledge that carries rich historically-accumulative and long-term temporal information. The incremental knowledge in our model is like the driving experience of humans. Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention. Our model exhibits a solid advantage over existing methods, achieving an outstanding performance improvement on two driver attention benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源