论文标题

部分可观测时空混沌系统的无模型预测

Multivariate elliptic kites and tetrahedral tadpoles

论文作者

Broadhurst, David

论文摘要

这项工作涉及扰动量子场理论中两种类型的Feynman积分:2循环的2分风筝,具有5个任意的内部质量,并由第六个传播器完成,以给出3环的四面体tadpole,具有6个任意质量。这些通用质量病例涵盖了基于谎言代数U(1),SU(2)和SU(3)的破碎和不间断的仪表理论,用于电磁,弱和强相互作用。这些积分的椭圆形子结构不应被视为障碍物。相反,由于高斯的算术几何平均值,这是一个奖励。给出了紧凑的公式,以处理所有情况。仔细考虑零质量限制。风筝中三角形的异常阈值毫无问题。研究了t的数量理论,结果令人着迷。

This work deals with two types of Feynman integrals in perturbative quantum field theory: the 2-loop 2-point kite, with 5 arbitrary internal masses, and its completion by a sixth propagator, to give a 3-loop tetrahedral tadpole, with 6 arbitrary masses. These general-mass cases cover broken and unbroken gauge theories, based on the Lie algebras U(1), SU(2) and SU(3), for the electromagnetic, weak and strong interactions. The elliptic substructure of these integrals should not be regarded as an obstruction. Rather, it is a bonus, thanks to the arithmetic-geometric mean of Gauss. Compact formulae are given, to handle all cases. Zero-mass limits are carefully considered. Anomalous thresholds of triangles in the kite pose no problem. The number theory of tadpoles is investigated, with intriguing results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源