论文标题

测量星系中物理参数的艺术:光谱分布拟合技术的批判性评估

The Art of Measuring Physical Parameters in Galaxies: A Critical Assessment of Spectral Energy Distribution Fitting Techniques

论文作者

Pacifici, Camilla, Iyer, Kartheik G., Mobasher, Bahram, da Cunha, Elisabete, Acquaviva, Viviana, Burgarella, Denis, Rivera, Gabriela Calistro, Carnall, Adam C., Chang, Yu-Yen, Chartab, Nima, Cooke, Kevin C., Fairhurst, Ciaran, Kartaltepe, Jeyhan, Leja, Joel, Malek, Katarzyna, Salmon, Brett, Torelli, Marianna, Vidal-Garcia, Alba, Boquien, Mederic, Brammer, Gabriel G., Brown, Michael J. I., Capak, Peter L., Chevallard, Jacopo, Circosta, Chiara, Croton, Darren, Davidzon, Iary, Dickinson, Mark, Duncan, Kenneth J., Faber, Sandra M., Ferguson, Harry C., Fontana, Adriano, Guo, Yicheng, Haeussler, Boris, Hemmati, Shoubaneh, Jafariyazani, Marziye, Kassin, Susan A., Larson, Rebecca L., Lee, Bomee, Mantha, Kameswara Bharadwaj, Marchi, Francesca, Nayyeri, Hooshang, Newman, Jeffrey A., Pandya, Viraj, Pforr, Janine, Reddy, Naveen, Sanders, Ryan, Shah, Ekta, Shahidi, Abtin, Stevans, Matthew L., Triani, Dian Puspita, Tyler, Krystal D., Vanderhoof, Brittany N., de la Vega, Alexander, Wang, Weichen, Weston, Madalyn E.

论文摘要

银河进化的研究取决于我们根据其物理特性来解释多波长星系观测的能力。为此,我们依靠光谱能量分布(SED)模型,使我们能够从分光光度计数据中推断出物理参数。近年来,由于经过广泛和深度的多波带星系调查,高质量数据的数量已大大增加。除了增加数据外,执行SED拟合的算法也有所改善,包括更好的建模处方,较新的模板和波长在波长空间中更广泛的采样。我们对不同的SED拟合代码(包括其方法和输出)进行了全面分析,目的是衡量建模假设引起的不确定性。我们将14个最常用的SED拟合代码应用于Z〜1和Z〜3的烛光光度目录的样品上。我们发现对恒星质量的共识,而我们观察到恒星形成率(SFR)和灰尘衰减结果的一些差异。为了探索代码之间的差异和偏见,我们探讨了各种建模假设的影响,因为它们是在代码(例如恒星形成历史,星状,尘埃和AGN模型)对衍生出的恒星质量,SFRS和A_V值的影响。然后,我们评估SFR冠军质量关系的代码之间的差异,并通过在恒星质量(〜0.1dex),SFR(〜0.3DEX)和尘埃衰减(〜0.3mag)中的建模选择(即建模不确定性)来衡量对不确定性的贡献。最后,我们提供一些资源,总结了SED配件中的最佳实践。

The study of galaxy evolution hinges on our ability to interpret multi-wavelength galaxy observations in terms of their physical properties. To do this, we rely on spectral energy distribution (SED) models which allow us to infer physical parameters from spectrophotometric data. In recent years, thanks to the wide and deep multi-waveband galaxy surveys, the volume of high quality data have significantly increased. Alongside the increased data, algorithms performing SED fitting have improved, including better modeling prescriptions, newer templates, and more extensive sampling in wavelength space. We present a comprehensive analysis of different SED fitting codes including their methods and output with the aim of measuring the uncertainties caused by the modeling assumptions. We apply fourteen of the most commonly used SED fitting codes on samples from the CANDELS photometric catalogs at z~1 and z~3. We find agreement on the stellar mass, while we observe some discrepancies in the star formation rate (SFR) and dust attenuation results. To explore the differences and biases among the codes, we explore the impact of the various modeling assumptions as they are set in the codes (e.g., star formation histories, nebular, dust, and AGN models) on the derived stellar masses, SFRs, and A_V values. We then assess the difference among the codes on the SFR-stellar mass relation and we measure the contribution to the uncertainties by the modeling choices (i.e., the modeling uncertainties) in stellar mass (~0.1dex), SFR (~0.3dex), and dust attenuation (~0.3mag). Finally, we present some resources summarizing best practices in SED fitting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源