论文标题

在任意高旋转背景中线性化的高旋转方程的移动同置分析

Shifted Homotopy Analysis of the Linearized Higher-Spin Equations in Arbitrary Higher-Spin Background

论文作者

Tarusov, A. A., Ushakov, K. A., Vasiliev, M. A.

论文摘要

对高旋转方程的一阶校正分析扩展到涉及Spinor $ y $变量的同型运算符,较高旋转连接$ω(y)$的参数以及高旋转零型零形式$ c(y)$的参数。结果表明,放松的统一$(y+p)$ - 偏移和$ω(y)$的转移尊重自由高架方程的适当形式,并构成了一类一类的顶点,其中包含由常规(无移位)同质拷贝引起的。证明$ω(y)$的参数的纯粹转变不影响一阶的一型高旋转字段$ w $,因此也不影响各个顶点的形式。

Analysis of the first-order corrections to higher-spin equations is extended to homotopy operators involving shift parameters with respect to the spinor $Y$ variables, the argument of the higher-spin connection $ω(Y)$ and the argument of the higher-spin zero-form $C(Y)$. It is shown that a relaxed uniform $(y+p)$-shift and a shift by the argument of $ω(Y)$ respect the proper form of the free higher-spin equations and constitute a one-parametric class of vertices that contains those resulting from the conventional (no shift) homotopy. A pure shift by the argument of $ω(Y)$ is shown not to affect the one-form higher-spin field $W$ in the first order and, hence, the form of the respective vertices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源