论文标题
通过物理信息复发性神经网络进行多尺度损害分析的深度学习
Deep Learning for Multiscale Damage Analysis via Physics-Informed Recurrent Neural Network
论文作者
论文摘要
通过基于均质化的并发多尺度模型对层次材料进行直接数值模拟对3D大型工程应用构成了关键挑战,因为在较低规模上对高度非线性和路径依赖性材料的计算导致高度计算成本造成高度较高的计算。在这项工作中,我们提出了一个具有物理信息的数据驱动的深度学习模型,作为一种有效的替代物,以模仿不可逆的弹性塑料硬化和软化变形下异质微结构的有效响应。我们的贡献包含了几项重大创新。首先,我们提出了一种新颖的训练方案,以在受变形约束的采样空间中生成任意加载序列,在这种采样空间中,每个序列的均质微结构响应的仿真成本大大减少通过机械减少阶模型。其次,我们开发了一个新的顺序学习者,该学习者通过自定义训练损失功能和数据流架构来结合热力学一致的物理限制。我们还证明了在经典多尺度有限元求解器框架内训练有素的替代物的整合。我们的数值实验表明,与减少模型相比,我们的模型比纯数据驱动的仿真器和显着的效率提高表现出显着的准确性提高。我们认为,我们的数据驱动模型为经典本构法律提供了一种计算高效且机械的替代方案,该法律对需要实质性均质化的不可逆行为的潜在高通量模拟有益。
Direct numerical simulation of hierarchical materials via homogenization-based concurrent multiscale models poses critical challenges for 3D large scale engineering applications, as the computation of highly nonlinear and path-dependent material constitutive responses at the lower scale causes prohibitively high computational costs. In this work, we propose a physics-informed data-driven deep learning model as an efficient surrogate to emulate the effective responses of heterogeneous microstructures under irreversible elasto-plastic hardening and softening deformation. Our contribution contains several major innovations. First, we propose a novel training scheme to generate arbitrary loading sequences in the sampling space confined by deformation constraints where the simulation cost of homogenizing microstructural responses per sequence is dramatically reduced via mechanistic reduced-order models. Second, we develop a new sequential learner that incorporates thermodynamics consistent physics constraints by customizing training loss function and data flow architecture. We additionally demonstrate the integration of trained surrogate within the framework of classic multiscale finite element solver. Our numerical experiments indicate that our model shows a significant accuracy improvement over pure data-driven emulator and a dramatic efficiency boost than reduced models. We believe our data-driven model provides a computationally efficient and mechanics consistent alternative for classic constitutive laws beneficial for potential high-throughput simulations that needs material homogenization of irreversible behaviors.