论文标题

语义图神经网络具有半监督分类的多量化学习

Semantic Graph Neural Network with Multi-measure Learning for Semi-supervised Classification

论文作者

Lin, Junchao, Wan, Yuan, Xu, Jingwen, Qi, Xingchen

论文摘要

近年来,图形神经网络(GNN)引起了越来越多的关注,并且在半监督节点分类任务中取得了出色的表现。大多数GNN的成功依赖于一个基本假设,即可以使用原始图形结构数据。但是,最近的研究表明,GNN容易受到图形的复杂基础结构的影响,因此有必要学习全面且可靠的图形结构,以实现下游任务,而不仅仅是仅依靠原始图形结构。鉴于此,我们试图学习以下游任务的最佳图形结构,并为半监督分类提供新的框架。具体而言,基于图和节点表示的结构上下文信息,我们在语义中编码复杂的交互作用,并生成语义图以保留全局结构。此外,我们开发了一种新颖的多量化注意力层,以优化相似性,而不是先验开处方,以便可以通过整合度量来自适应地评估相似性。这些图与GNN融合并优化了半监督分类目标。对六个现实世界数据集的广泛实验和消融研究清楚地证明了我们提出的模型的有效性以及每个组件的贡献。

Graph Neural Networks (GNNs) have attracted increasing attention in recent years and have achieved excellent performance in semi-supervised node classification tasks. The success of most GNNs relies on one fundamental assumption, i.e., the original graph structure data is available. However, recent studies have shown that GNNs are vulnerable to the complex underlying structure of the graph, making it necessary to learn comprehensive and robust graph structures for downstream tasks, rather than relying only on the raw graph structure. In light of this, we seek to learn optimal graph structures for downstream tasks and propose a novel framework for semi-supervised classification. Specifically, based on the structural context information of graph and node representations, we encode the complex interactions in semantics and generate semantic graphs to preserve the global structure. Moreover, we develop a novel multi-measure attention layer to optimize the similarity rather than prescribing it a priori, so that the similarity can be adaptively evaluated by integrating measures. These graphs are fused and optimized together with GNN towards semi-supervised classification objective. Extensive experiments and ablation studies on six real-world datasets clearly demonstrate the effectiveness of our proposed model and the contribution of each component.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源