论文标题
在高斯 - 骨网重力中带电广告的热特性与非线性电动力学结合
On heat properties of charged AdS black holes in Gauss-Bonnet gravity coupled with nonlinear electrodynamics
论文作者
论文摘要
我们研究了高斯 - 骨网重与非线性电动力学的电荷广告黑洞的热特性。我们从热容量的角度考虑了黑洞的热力学,并表明非线性电动力学有助于提高黑洞的热力学稳定性。我们执行二维描述以重现鹰温度,该温度确认鹰温度具有内在的拓扑性质,并具有更高维度的球形对称时空。我们还分析了麦克斯韦相等的区域定律和共存曲线,并根据关键指数找到了范德华样相变的存在。此外,我们处理高斯 - 骨网重的带电广告的黑洞,再加上非线性电动力学作为研究全息热发动机的工作材料,并获得了矩形发动机循环效率的精确表达。然后,我们讨论非线性电动力学和高斯 - 骨网耦合对矩形发动机循环的影响,并将该周期的效率与Carnot循环的效率进行比较。
We investigate the heat properties of charged AdS black holes in the Gauss-Bonnet gravity coupled with nonlinear electrodynamics. We consider the thermodynamics of black holes from the perspective of heat capacity and show that the nonlinear electrodynamics can be helpful to improve the thermodynamic stability of black holes. We perform a two-dimensional description in order to reproduce the Hawking temperature, which confirms that the Hawking temperature has an intrinsic topological nature and holds for a higher dimensional spherically symmetric spacetime. We also analyze the Maxwell equal area law and coexistence curve, and find the existence of van der Waals-like phase transitions based on critical exponents. Moreover, we deal with a charged AdS black hole in the Gauss-Bonnet gravity coupled with nonlinear electrodynamics as a working material to study holographic heat engines and obtain an exact expression for the efficiency of a rectangular engine cycle. We then discuss the effects of nonlinear electrodynamics and Gauss-Bonnet couplings on the rectangular engine cycle and compare the efficiency of this cycle with that of the Carnot cycle.