论文标题
阴极碳化学吸附二氧化碳:为什么是真的?
Cathodic Carbon Chemically Adsorbs Carbon Dioxide: Why Is it True?
论文作者
论文摘要
大规模应用正在等待最佳的CO2清真寺来加强CCS和CCU技术。我们在这里介绍并简洁地验证了一种新的哲学,即通过负电荷的碳质结构来捕获气体二氧化碳。由于施加电压后,二氧化碳的化学吸收可能可能导致明显的亲核相互作用碳中心出现。因此,碳质阴极可以作为新的二氧化碳吸附剂的原型。作为模拟化学吸附的模型,我们使用了小型石墨烯量子点(GQD)。根据记录的反应曲线,含有16个碳原子的负电荷的GQD很容易与CO2分子反应并产生羧化GQD。反过来,在文献的背景下,水反应的活化能(60 kJ/mol)和能量效应(-55 kJ/mol)似乎具有令人惊讶的竞争力。我们假设碳质阴极应进行深入的实验研究,这是可能的二氧化碳化学吸附剂。尽管我们使用GQD进行了模拟,但令人鼓舞的结果可以推断到其他纳米级碳,更重要的是,在现代电化学设备中广泛使用的活性炭物种。
Large-scale applications are waiting for an optimal CO2 scavenger to reinforce CCS and CCU technologies. We herein introduce and succinctly validate a new philosophy of capturing gaseous CO2 by negatively-charged carbonaceous structures. The chemical absorption of CO2 turns out possible thanks to the emergence of significant nucleophilic interaction carbon centers upon applying voltage. The carbonaceous cathode, therefore, may serve as a prototype of a new CO2 sorbent. As a model to simulate chemisorption, we used a small-sized graphene quantum dot (GQD). According to the recorded reaction profiles, the negatively charged GQD containing 16 carbon atoms readily reacts with the CO2 molecule and produces carboxylated GQD. In turn, the activation energy (60 kJ/mol) and energy effect (-55 kJ/mol) for the reaction in water appeared surprisingly competitive in the context of the literature. We hypothesize that the carbonaceous cathode deserves in-depth experimental research as a possible CO2 chemical sorbent. Despite we used GQD for simulations, the encouraging results can be extrapolated to other nanoscale carbons and, more importantly, to the activated carbon species widely employed in modern electrochemical devices.