论文标题

移动应用中AI技术的实证研究

An Empirical Study of AI Techniques in Mobile Applications

论文作者

Li, Yinghua, Dang, Xueqi, Tian, Haoye, Sun, Tiezhu, Wang, Zhijie, Ma, Lei, Klein, Jacques, Bissyandé, Tegawendé F.

论文摘要

人工智能(AI)集成到移动应用程序中已经显着改变了各个领域,增强了用户体验并通过高级机器学习(ML)和深度学习(DL)技术提供个性化服务。 AI驱动的移动应用程序通常是指利用ML/DL技术执行关键任务(例如图像识别和自然语言处理)的应用程序。在本文中,我们对AI应用程序进行了最广泛的经验研究,探讨了设备上的ML应用程序,设备DL应用程序和AI服务支持的(基于云)的应用程序。我们的研究涵盖了56,682个现实世界中的AI应用程序,重点介绍了三种关键观点:1)应用程序分析,我们在其中分析了AI应用程序的普及并研究了AI应用程序的更新状态; 2)框架和模型分析,我们在其中分析AI框架使用情况和AI模型保护; 3)用户分析,我们检查用户隐私保护和用户审查态度。我们的研究对AI应用程序开发人员,用户和AI R \&d具有很大的影响。一方面,我们的发现突出了移动应用程序中AI集成的日益增长的趋势,证明了各种AI框架和模型的广泛采用。另一方面,我们的发现强调了需要强大的模型保护以增强应用程序安全性。此外,我们的研究强调了用户隐私的重要性,并提出了用户对当前AI应用程序中使用的AI技术的态度。我们提供AI应用数据集(目前是最广泛的AI应用数据集),作为用于移动应用程序中使用的AI技术的未来研究的开源资源。

The integration of artificial intelligence (AI) into mobile applications has significantly transformed various domains, enhancing user experiences and providing personalized services through advanced machine learning (ML) and deep learning (DL) technologies. AI-driven mobile apps typically refer to applications that leverage ML/DL technologies to perform key tasks such as image recognition and natural language processing. In this paper, we conducted the most extensive empirical study on AI applications, exploring on-device ML apps, on-device DL apps, and AI service-supported (cloud-based) apps. Our study encompasses 56,682 real-world AI applications, focusing on three crucial perspectives: 1) Application analysis, where we analyze the popularity of AI apps and investigate the update states of AI apps; 2) Framework and model analysis, where we analyze AI framework usage and AI model protection; 3) User analysis, where we examine user privacy protection and user review attitudes. Our study has strong implications for AI app developers, users, and AI R\&D. On one hand, our findings highlight the growing trend of AI integration in mobile applications, demonstrating the widespread adoption of various AI frameworks and models. On the other hand, our findings emphasize the need for robust model protection to enhance app security. Additionally, our study highlights the importance of user privacy and presents user attitudes towards the AI technologies utilized in current AI apps. We provide our AI app dataset (currently the most extensive AI app dataset) as an open-source resource for future research on AI technologies utilized in mobile applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源