论文标题

使用部分域适应的变异推断,域不变特征对齐

Domain-Invariant Feature Alignment Using Variational Inference For Partial Domain Adaptation

论文作者

Choudhuri, Sandipan, Adeniye, Suli, Sen, Arunabha, Venkateswara, Hemanth

论文摘要

标准的闭合域适应方法试图在两个共享相同标签集的约束下减轻两个域之间的分布差异。但是,在现实的情况下,找到具有相同标签空间的最佳源域是一项具有挑战性的任务。部分域的适应减轻了采购具有相同标签空间假设的标签数据集的问题,并解决了一个更实用的方案,其中源标签集集合目标标签集。但是,这在适应过程中会带来一些其他障碍。具有私有类别的样本to source域阻碍了相关的知识转移和降低模型性能。在这项工作中,我们试图通过将变异信息和对抗性学习与伪标记的技术耦合来解决这些问题,以实施类别分布对齐,并最大程度地减少从源样本中多余信息的传递。众多跨域分类任务中的实验发现表明,该提出的技术为现有方法提供了较高的准确性。

The standard closed-set domain adaptation approaches seek to mitigate distribution discrepancies between two domains under the constraint of both sharing identical label sets. However, in realistic scenarios, finding an optimal source domain with identical label space is a challenging task. Partial domain adaptation alleviates this problem of procuring a labeled dataset with identical label space assumptions and addresses a more practical scenario where the source label set subsumes the target label set. This, however, presents a few additional obstacles during adaptation. Samples with categories private to the source domain thwart relevant knowledge transfer and degrade model performance. In this work, we try to address these issues by coupling variational information and adversarial learning with a pseudo-labeling technique to enforce class distribution alignment and minimize the transfer of superfluous information from the source samples. The experimental findings in numerous cross-domain classification tasks demonstrate that the proposed technique delivers superior and comparable accuracy to existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源